NOTE ON MATH 2060: MATHEMATICAL ANALYSIS II: 2016-17

CHI-WAI LEUNG

1. RIEMANN INTEGRABLE FUNCTIONS

We will use the following notation throughout this chapter.

(i): All functions f, g, h... are bounded real valued functions defined on [a,b] and m < f < M on
[a,b] .

(ii): Let P : a = 29 < 1 < .... < x, = b denote a partition on [a,b]; Put Az; = z; — x;—1 and
| P|| = max Ax;.

(iii): M;(f, P) :=sup{f(x):x € [xi—1,zi}; mi(f, P) == inf{f(x) : x € [x;_1,2;}.
Set wi(f, P) = Mi(f, P) — mi(f, P).

(iv): (the upper sum of f): U(f, P):= > M;(f, P)Ax;
(the lower sum of f). L(f, P):=>_ m;(f, P)Ax;.

Remark 1.1. [t is clear that for any partition on [a,b], we always have

The following lemma is the critical step in this section.

Lemma 1.2. Let P and Q be the partitions on [a,b]. We have the following assertions.

(i) If P C Q, then L(f, P) < L(f,Q) < U(f,Q) < U(f,P).
(i) We always have L(f, P) < U(f,Q).

Proof. For Part (i), we first claim that L(f, P) < L(f,Q) if P C @. By using the induction on
[ := #Q — #P, it suffices to show that L(f,P) < L(f,Q)asl=1. Let P:a=xo<x1 < ---<xp=0>
and @ = P U {c}. Then ¢ € (zs_1,x5) for some s. Notice that we have

ms(f7 P) < min{ms(f7 Q)a ms+1(f7 Q)}
So, we have

ms(f7 P)(I’s - xsfl) < ms(f7 Q)(C - 33'3,1) + merl(fa Q)(xs - C)‘

This gives the following inequality as desired.
(L1)  L(f,Q) = L(f, P) = my(f. Q)¢ — 1) + a1 (£, Q) (s — ¢) — my(f, P) (s — 1) = 0.

Now by considering — f in the Inequality 1.1 above, we see that U(f,Q) < U(f, P).
For Part (i), let P and @ be any pair of partitions on [a, b]. Notice that P U @ is also a partition on
[a,b] with P C PUQ and Q C PUQ. So, Part (i) implies that

L(f,P) < L(f,PUQ) <U(f,PUQ) <U(f,Q).
The proof is complete. O
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The following plays an important role in this chapter.
Definition 1.3. Let f be a bounded function on [a,b]. The upper integral (resp. lower integral) of f
over [a, b], write fabf (resp. f;f), is defined by

)

/ f=if{U(f, P): P is a partation on [a,bl]}.

a

(resp.

/bf = sup{L(f, P) : P is a partation on [a,b]}.)

Notice that the upper integral and lower integral of f must exist by Remark 1.1.

Proposition 1.4. Let f and g both are bounded functions on [a,b]. With the notation as above, we

always have
(i) B
/ab r< 't

(i) ['(~f)=—['t.

(iii) B
/abf+/abg§/ab(f+g)§/:(f+g)S/aber :g.

Proof. Part (i) follows from Lemma 1.2 at once.
Part (i7) is clearly obtained by L(—f, P) = —=U(f, P).
For proving the inequality f;f + ffg < ff(f + g) < first. It is clear that we have L(f, P)+ L(g, P) <

L(f + g, P) for all partitions P on [a,b]. Now let P; and P, be any partition on [a,b]. Then by Lemma
1.2, we have

b
L(f,P1) + L(g, ) < L(f,PLUP) + L(g,PLUP) < L(f + g, PL U P,) S/ (f +9).

So, we have

(1.2) /abf+/abg§/ab(f+g)-

As before, we consider —f and —g in the Inequality 1.2, we get E(f +g) < T;f +f7bg as desired. [

The following example shows the strict inequality in Proposition 1.4 (ii) may hold in general.

Example 1.5. Define a function f,g:[0,1] — R by
1 if xe€(0,1]NQ;
Fa) = { feel0.1nQ

-1 otherwise.



and

1 otherwise.

{—1 if ©€0,1]NQ;

Then it is easy to see that f + g =0 and

—2=/abf / /f+g—0:/f+g / /

We can now reaching the main definition in this chapter.

So, we have

Definition 1.6. Let f be a bounded function on [a,b]. We say that f is Riemann integrable over [a, b
if Tbaf = fabf In this case, we write fabf for this common value and it is called the Riemann integral
of f over [a,b].

Also, write R[a,b] for the class of Riemann integrable functions on [a,b].

Proposition 1.7. With the notation as above, R[a,b] is a vector space over R and the integral

/ feRabH/feR

defines a linear functional, that is, af + Bg € Rla,b] and fa (af + Bg) = Oéf;f + Bffg for all
fyg € Rla,b] and o, B € R.

Proof. Let f,g € R[a,b] and o, f € R. Notice that if o > 0, it is clear that T;Oéf = O‘Ef - Oéf;f —
oszf = ffozf. Also, if o < 0, we have f;af = afff — Oéfff — Oéf;f _ ffOéf- Therefore, we have

ffaf = afabf for all « € R. For showing f + g € R[a,b] and ff(f +g) = f;f + f;g, these will
follows from Proposition 1.4 (iii) at once. The proof is finished. O

The following result is the important characterization of a Riemann integrable function. Before
showing this, we will use the following notation in the rest of this chapter.
For a partition P:a=20<z1 < -+ <xp=band 1 <17 <n, put

wi(f, P) :=sup{|f(x) — f(2')| : z,2" € [wi_1, 23]}
It is easy to see that U(f, P) — L(f, P) = >/, wi(f, P)Ax;.

Theorem 1.8. Let f be a bounded function on [a,b]. Then f € Rla,b] if and only if for all e > 0,
there is a partition P :a =x9 < --- <z, = b on [a,b] such that

(1.3) 0<U(f,P sz f, P)Azx; < e.
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Proof. Suppose that f € Ra,b]. Let € > 0. Then by the definition of the upper integral and lower

integral of f, we can find the partitions P and @ such that U(f, P) < fff + ¢ and fff —e < L(f,Q).
By considering the partition P U (), we see that o

b )
/f—a<L<f,Q>gL(f:Pu@)5U<f,PUQ>SU<f,P></f+a.

Since f(ff = f;f = fabf, we have 0 < U(f,PUQ) — L(f,PUQ) < 2¢. So, the partition PUQ is as
desired. o

Conversely, let € > 0, assume that the Inequality 1.3 above holds for some partition P. Notice that
we have

L(f,P) < /abf < /abf <U(f,P).

So, we have 0 < Tff — fff < ¢ for all € > 0. The proof is finished. O

Remark 1.9. Theorem 1.8 tells us that a bounded function f is Riemann integrable over [a,b] if and
only if the “size” of the discontinuous set of f is arbitrary small.

Example 1.10. Let f: [0,1] — R be the function defined by

1 if © = 2, where p, q are relatively prime positive integers;
fl@)=47 P

0 otherwise.
Then f € R[0,1].
(Notice that the set of all discontinuous points of f, say D, is just the set of all (0,1] N Q. Since the
set (0,1] N Q is countable, we can write (0,1] N Q = {21, z2,....}. So, if we let m(D) be the “size” of
the set D, then m(D) = m(U;21{zi}) = Yoy m({z}) = 0, in here, you may think that the size of
each set {z;} is 0. )
Proof. Let € > 0. By Theorem 1.8, it aims to find a partition P on [0, 1] such that

U(f,P) —L(f,P) <E.

Notice that for x € [0, 1] such that f(z) > ¢ if and only if x = ¢/p for a pair of relatively prime positive
integers p, ¢ with }% > e. Since 1 < g < p, there are only finitely many pairs of relatively prime positive
integers p and ¢ such that f(%) >e. So, if welet S :={x €0,1]: f(x) > ¢}, then S is a finite subset

of [0,1]. Let L be the number of the elements in S. Then, for any partition P:a =9 < -+ < z, = 1,
we have

n
i=1 ©Ti—1,2:]NS=0  i:[zi—1,x,]NSHAD
Notice that if [z;—1,2;] NS = 0, then we have w;(f, P) < ¢ and thus,
Z wi(f, P)Az; <e Z Azx; <e(1-0).
i:[zi_l,zi]ﬁszm i:[wi_l,wi}ﬂS:@
On the other hand, since there are at most 2L sub-intervals [z;_1, 2;] such that [z;—1,2;] NS # () and
wi(f,P) <1foralli=1,..,n, so, we have

SN wlhPA <1 Y Az <2L|P|.

i:[z‘ifl,zi]ﬂS;ﬁ@ i:[mi,l,xi}ﬂs;é@



We can now conclude that for any partition P, we have
n
> wi(f, P)Az; < e+ 2L||P|.
i=1

So, if we take a partition P with || P| < e/(2L), then we have > " | w;(f, P)Az; < 2e.
The proof is finished. H

Proposition 1.11. Let f be a function defined on |a,b]. If f is either monotone or continuous on
[a,b], then f € R[a,b].

Proof. We first show the case of f being monotone. We may assume that f is monotone increasing.
Notice that for any partition P : a = xg < --+ < z,, = b, we have w;(f, P) = f(x;) — f(xi—1). So, if
|P|| < e, we have

D wilf, P)Az =Y (f(wi)—f(wi1)Axs < [P (f(@i)—f (i) = [[PI(f(b)—f(a) < e(f(b)—f(a)).
i=1 i=1 i=1

Therefore, f € Rla,b] if f is monotone.

Suppose that f is continuous on [a,b]. Then f is uniform continuous on [a,b]. Then for any € > 0,
there is 6 > 0 such that |f(z) — f(2)| < € as x, 2’ € [a,b] with |z — 2’| < J. So, if we choose a partition
P with ||P|| < 6, then w;(f, P) < ¢ for all i. This implies that

Zwi(f, P)Az; < 52 Az; =¢e(b—a).
i=1 i=1
The proof is complete. O

Proposition 1.12. We have the following assertions.

(i) If 9 € Rla,b] with f < g, then [} f < [} g.
(ii) If f € Rla,b], then the absolute valued function |f| € Rla,b]. In this case, we have |fff| <

b
Ja 11
Proof. For Part (i), it is clear that we have the inequality U(f, P) < U(g, P) for any partition P. So,

we have [7f = [ < [J9= [} g.

For Part (i7), the integrability of |f| follows immediately from Theorem 1.8 and the simple inequality
A1) = [FI")] < [f(@") = f(2")] for all a’,2" € [a,b]. Thus, we have U(|f],P) — L(|f|,P) <
U(f,P)— L(f,P) for any partition P on [a, b].

Finally, since we have —f < |f| < f, by Part (i), we have ]fff| < f; |f| at once. O

Proposition 1.13. Let a < ¢ < b. We have f € R[a,b] if and only if the restrictions f|(, € Rla, c]
and flicp € Rlc,b]. In this case we have

(1.4) /abfz/achr/cbf-

P?“OOf. Let fl = f’[a,c} and f2 = f’[qb]'
It is clear that we always have

U(f1,P1) — L(f1, P1) + U(f2, P2) — L(f2, P2) = U(P, f) — L(f, P)

for any partition P; on [a,c] and P, on [c,b] with P = P, U P.
From this, we can show the sufficient condition at once.
For showing the necessary condition, since f € R[a,b], for any € > 0, there is a partition @ on [a, ]
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such that U(f,Q) — L(f,Q) < € by Theorem 1.8. Notice that there are partitions P; and P; on [a, ]
and [c, b] respectively such that P := Q U {c} = P U P,. Thus, we have

U(f1, P1) = L(f1, P1) + U(f2, P2) — L(f2, P») = U(f, P) — L(f, P) < U(f,Q) — L(f,Q) <e.

So, we have f1 € R[a,c| and f2 € R]c, b].
It remains to show the Equation 1.4 above. Notice that for any partition P; on [a,c] and P, on [c, b],
we have

b b
Mnawmmjmzuﬂau@s/fsz

So, we have [T f + fcb f < ff f. Then the inverse inequality can be obtained at once by considering
the function —f. Then the resulted is obtained by using Theorem 1.8. U

2. FUNDAMENTAL THEOREM OF CALCULUS

Now if f € Rla,b], then by Proposition 1.13, we can define a function F : [a,b] — R by

0 ifc=a
@1) Flo= {f;f ifa<c<b.

Theorem 2.1. Fundamental Theorem of Calculus: With the notation as above, assume that
f € Rla,b], we have the following assertion.

(i) If there is a continuous function H on [a,b] which is differentiable on (a,b) with H = f,
then fff = H(b) — H(a). In this case, H is called an indefinite integral of f. (note: if
Hq and Hy both are the indefinite integrals of f, then by the Mean Value Theorem, we have
Hy; = Hy + constant).

(ii) The function F defined as in Eq. 2.1 above is continuous on [a,b]. Furthermore, if f is
continuous on [a,bl, then F' exists on (a,b) and F' = f on (a,b).

Proof. For Part (i), notice that for any partition P :a = xg < --- < 2, = b, then by the Mean Value
Theorem, for each [x;_1,z;], there is £ € (21, x;) such that F(z;) — F(x;—1) = F'(§)Ax; = f(§)Aw;.
So, we have

L(f,P) <Y f(O)Aw; = F(w:) = F(wi1) = F(b) = F(a) <U(f, P)

for all partitions P on [a,b]. This gives

LU:LZSF@-m@leZLH
as desired.

For showing the continuity of F' in Part (ii), let a < ¢ < x < b. If |f| < M on [a,b], then we have
|F(z)—F(c)| = | [T f] < M(xz—c). So, limy_,cq F(z) = F(c). Similarly, we also have lim,_,. F(z) =
F(c). Thus F is continuous on [a, b].

Now assume that f is continuous on [a, b]. Notice that for any ¢t > 0 with a < ¢ < ¢+t < b, we have

inf f(x) <

1
z€[c,c+t] t

ct+t
(Fle+-Fe)=7 [ f< sw f)

z€[c,c+t]

1 1
Since f is continuous at ¢, we see that tliI& E(F(CH) —F(c)) = f(c). Similarly, we have tlim —(F(c+
—

—0— ¢

t) — F(c)) = f(c). So, we have F'(c) = f(c) as desired. The proof is finished. O



3. RIEMANN SUMS
Definition 3.1. For each bounded function f on |a,b]. Call R(f, P,{&}) = > f(&)Ax;, where

& € [zi—1,xi], the Riemann sum of f over [a,b].
We say that the Riemann sum R(f, P,{&}) converges to a number A as |P|| — 0 if for any € > 0,
there is 6 > 0 such that

|A—R(f, P{&})| <e
whenever ||P|| < ¢ and for any & € [x;—1,x;].

Lemma 3.2. f € Rla,b] if and only if for any € > 0, there is § > 0 such that U(f,P) — L(f,P) < ¢
whenever || P|| < 0.

Proof. The converse follows from Theorem 1.8.
Assume that f is integrable over [a, b]. Let € > 0. Then there is a partition Q : a = yo < ... < y; = bon
[a,b] such that U(f,Q) — L(f,Q) < e. Now take 0 < 6 < ¢/l. Suppose that P:a =29 < ... <z, =b
with || P|| < ¢. Then we have
U(f,P)—L(f,P)=I1+1I
where
I = Z wi(f, P)Ax;;
1:QN[x;_1,2:]=0
and
IT = > wilf,P)Ax
1:QN[x; 1,270
Notice that we have
I'<U(f,Q)—L(f,Q) <e
and
H<(M-my Y A< (M—m)-2l-§:2(M—m)5.
1:QN[x;—1,2:]#0
The proof is finished. ]

Theorem 3.3. f € Rla,b] if and only if the Riemann sum R(f, P,{&}) is convergent. In this case,
b
R(f, P,{&}) converges to / f(x)dz as ||P|| — 0.

Proof. For the proof (=) : we first note that we always have

L(f,P) SR(f,P,{fZ})SU(f,P)

and )
L(f,P) < / f(x)dz < U(f, P)

for any partition P and §; € [z;—1, z;].
Now let € > 0. Lemma 3.2 gives 6 > 0 such that U(f, P) — L(f, P) < € as ||P|| < . Then we have

b
| / f(x)dz — R(f,P.{&})] < ¢

b
as | P|| < ¢ and & € [z;—1,2;]. The necessary part is proved and R(f, P, {&;}) converges to / f(z)dz.

a

For (<) : assume that there is a number A such that for any € > 0, there is 6 > 0, we have
A—e<R(f,P{&}) <A+e
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for any partition P with |P|| < ¢ and & € [zi—1,x].
Now fix a partition P with ||P|| < 0. Then for each [z;—1,x;], choose & € [zi_1,x;] such that
M;(f, P) —e < f(&). This implies that we have

U(f,P)—e(b—a) <R(f, P {&}) <A+e

So we have shown that for any € > 0, there is a partition P such that

(3.1) /bf(x)d:cgU(f,P) <A+e(l+b—a)

By considering — f, note that the Riemann sum of —f will converge to —A. The inequality 3.1 will
imply that for any € > 0, there is a partition P such that

b b
A—5(1+b—a)§/f(a;)dx§/f(x)deA—i-s(l—i—b—a).
The proof is finished. O

Theorem 3.4. Let f € R[c,d] and let ¢ : [a,b] — [c,d] be a strictly increasing C* function with
fla) =c and f(b) =d.
Then f o ¢ € Rla,b], moreover, we have

d b
/ f(@)de = / F(6(0)6(t)dt.

Proof. Let A = fcd f(x)dzx. By Theorem 3.3, we need to show that for all € > 0, there is § > 0 such
that

[A=" F(S(Er)) (&) Atr| < &

for all &, € [tx—1,tx] whenever Q : a =ty < ... < t,,, = b with ||Q]] <.
Now let € > 0. Then by Lemma 3.2 and Theorem 3.3, there is §; > 0 such that

(32) A= flm) Dy < e
and
(3.3) > wi(f, P) Ay <e

for all n € [xx—1,xk] whenever P:c =z < ... < Ty, = d with ||P|| < d;.

Now put = = ¢(t) for t € [a,b].

Now since ¢ and ¢’ are continuous on [a, b], there is 6 > 0 such that |¢(t) — ¢(t')] < 01 and |¢'(t) —
¢ ()| < e for all t,t" infa,b] with [t —t'| <.

Now let Q :a =ty < ... <ty = b with ||Q| < 6. If we put x, = ¢(t;), then P:c=2p < .... <z, =d
is a partition on [c, d] with || P|| < d; because ¢ is strictly increasing.

Note that the Mean Value Theorem implies that for each [tx_1,tx], there is & € (tk—1,tx) such that

Azy = d(tr) — ¢tr—1) = ¢'(§) Aty
This yields that
(3.4) | Ay, — ¢ (E) Aty| < ety

for any & € [ty—1,tx) for all k = 1,...,m because of the choice of 4.
Now for any & € [tx—1,tx], we have



A= F(O()e (&) Ati]| < |A - Zf ¢ (&) Dt
(3.5) H) T F OGN (G AL — > F(B(E))S (&) At
+1) f<<z><£;;))¢’<fkmtk = F(B(ER) (&) Ot

Notice that inequality 3.2 implies that
|A— Zf ¢ (ER)Dty| = |A — Zf P(&k)) Dak| <e.

Also, since we have |¢'(&;) — ¢’(§k)] <eforall k=1,..,m, we have

1D FGENS (G Aty — > F(6(5i)9 (&) AOti| < M(b— a)e

where |f(x)| < M for all z € [¢,d].
On the other hand, by using inequality 3.4 we have

|6 (&) Aty| < Dy + ety

for all k. This, together with inequality 3.3 imply that

1D FGENS (&) Atk — > F(S(Ek))0 (&) At

<Y wi(f P (G At (o $(E8), B(E) € [, 1))

< wilf, P)(Axy + eAty)

<e+2M(b—a)e.
Finally by inequality 3.5, we have

A=) F(0(R)d (&) Atr| < e+ M(b—a)e + &+ 2M(b — a)e.

The proof is finished. U]

4. IMPROPER RIEMANN INTEGRALS

Definition 4.1. Let —oco < a < b < 00.

(i) Let f be a function defined on [a,00). Assume that the restriction f|iq7) is integrable over
T

la,T] for all T > a. Put / f:= lim [ if this limit ewists.

T—oo Jq

Similarly, we can define ffoo fif f is defined on (—o0,b).
b b
(i) If f is defined on (a,b] and fliy € Rlc,b] for all a < ¢ <b. Put / f = l_i>m+ fafit

exists.
Similarly, we can define f;f if f is defined on [a,b).
(iii) As f is defined on R, if [;° f and fi]oof both exist, then we put [~ f = fi)oof + [ f
In the cases above, we call the resulting limits the improper Riemann integrals of f and say that the
integrals are convergent.

Example 4.2. Define (formally) an improper integral T'(s) ( called the T'-function) as follows:

I'(s) :—/ ¥ e dx
0

for s € R. Then I'(s) is convergent if and only if s > 0.
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Proof. Put I(s f 2 le *dx and I1(s) := [[°a* te “dz. We first claim that the integral I1(s)
is convergent for all s € R.

In fact, if we fix s € R, then we have
xs—l

lim =0.

T—00 ex/2

So there is M > 1 such that i < 1 for all x > M. Thus we have

o0 oo
0< / e dx < / e 2 dy < 0.
M M

Therefore we need to show that the integral I(s) is convergent if and only if s > 0.
Note that for 0 < n < 1, we have

O</11‘S_1e_xdx</1xs_1dm: sA—m) s -1
Uy Jn —Inn otherwise .

Thus the integral I(s) = lim 25" e™®dx is convergent if s > 0.

Conversely, we also have

1 1 e ! s :
1 _ _ 1—n%) if s —1+#—1;
s 16 Tlr > e 1/ s ld.T — s ( )
/77 - n —e ! Inn otherwise .

So if s <0, then fnl x5 te~*dx is divergent as n — 04. The result follows. O

5. UNIFORM CONVERGENCE OF A SEQUENCE OF DIFFERENTIABLE FUNCTIONS
Proposition 5.1. Let f, : (a,b) — R be a sequence of functions. Assume that it satisfies the
following conditions:

(i) : fn(z) point-wise converges to a function f(x) on (a,b);
(ii) : each f, is a C' function on (a,b);
(i1i) : f), — g uniformly on (a,b).
Then f is a C'-function on (a,b) with f' = g.
Proof. Fix ¢ € (a,b). Then for each z with ¢ < = < b (similarly, we can prove it in the same way as
a < x < c¢), the Fundamental Theorem of Calculus implies that

= [ rwar+ g,

Since f], — ¢ uniformly on (a,b), we see that

/j fLt)dt — /cx g(t)dt

This gives

(51) fla) = [ ottt + 5lc).

for all € (¢,b). Similarly, we have f(z) = [T g(t)dt + f(c) for all z € (a,b).

On the other hand, g is continuous on (a b) since each f] is continuous and f] — ¢ uniformly on
(a,b). Equation 5.1 will tell us that f’ exists and f' = g on (a,b). The proof is finished. O

Proposition 5.2. Let (f,) be a sequence of differentiable functions defined on (a,b). Assume that
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(i): there is a point ¢ € (a,b) such that lim f,(c) exists;

(ii): fl converges uniformly to a function g on (a,b).
Then

(a): fn converges uniformly to a function f on (a,b);

(b): f is differentiable on (a,b) and f' = g.

Proof. For Part (a), we will make use the Cauchy theorem.
Let ¢ > 0. Then by the assumptions (7) and (i%), there is a positive integer NV such that

|[fm(c) = fu(c)l < e and |fj,(x) — fr(2)| <e
for all m,n > N and for all z € (a,b). Now fix ¢ < z < b and m,n > N. To apply the Mean Value
Theorem for f,,, — f, on (¢, z), then there is a point £ between ¢ and x such that
(5.2) fim(@) = fu(@) = f(c) = fulc) + (fn (&) — fa()) (@ — o).
This implies that

[fm (@) = fu(@)] < [fim(c) = ful) + £ () = fo(llz —c| <e+ (b—a)e

for all m,n > N and for all z € (¢,b). Similarly, when z € (a,c), we also have

|fm(z) — fu(z)| < e+ (b—a)e.

So Part (a) follows.
Let f be the uniform limit of (f,) on (a,b)
For Part (b), we fix u € (a,b). We are going to show

i {0 = (@)

T—u T — U

= g(w).
Let € > 0. Since (f}) is uniformly convergent on (a,b), there is N € N such that
(5-3) (@) — fa(@)] <e

for all m,n > N and for all z € (a,b)
Note that for all m > N and z € (a,b) \ {u}, applying the Mean value Theorem for f,, — fn as before,

we have
fm(x) = [n(@) _ fn(u) — fn(u)
T —u N T —u
for some & between u and =x.
So Eq.5.3 implies that

+ (&) = fn (&)

fm(@) = fm(w) _ fn(x) = f(u)

5.4 <
(54) | r—u r—u |se
for all m > N and for all x € (a,b) with x # u.
Taking m — oo in Eq.5.4, we have

S =50 ) = Ix),

r—u r—1Uu

Hence we have
fn(@) = fn(u)

J&Z T ) < A2 2T @ 2 ) = fiw)

r—Uu r—cC r—Uu r—Uu

fn(@) = fn(u)
< —_— .
<oy (DI g
So if we can take 0 < § such that \W — fy(w)| < e for 0 < |z —u| < J, then we have
x) — f(u
5.5 DI gy < 2e
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for 0 < |z —u| < 6. On the other hand, by the choice of N, we have |f} (v) — fx(y)| < € for all
y € (a,b) and m > N. So we have |g(u) — fj(u)| < e. This together with Eq.5.5 give

f@) — fu
T —u
as 0 < |z — u| <, that is we have
oy T — U
The proof is finished. O

Remark 5.3. The uniform convergence assumption of (f],) in Propositions 5.1 and 5.2 is essential.

Example 5.4. Let f,(z) :=tan"! nz for x € (—1,1). Then we have

/2 if > 0;
f(z) :=limtan 'naz = { 0 if ¢ = 0;
—m/2 if x < 0.

Also g(x) = lim,, f/(x) = lim, 1/(1 + n22?) = 0 for all z € (—1,1). So Propositions 5.1 and 5.2 does
not hold. Note that (f]) does not converge uniformly to g on (—1,1).

6. DINI’'S THEOREM

Recall that a subset A of R is said to be compact if for any family open intervals cover {J;};cr of
A, that is, each J; is and open interval and A C |J;c; Ji, we can find finitely many J;,, ..., J;, such
thatAQJilu---UJiN.

The following is a very important result.

Theorem 6.1. A subset A of R is compact if and only if any sequence (xy) in A has a convergent
subsequence (T, ) such that limy x,, € A. In particular, every closed and bounded interval is compact
by using the Bolzano- Weierstrass Theorem.
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Proposition 6.2. (Dini’s Theorem): Let A be a compact subset of R and f, : A — R be a sequence
of continuous functions defined on A. Suppose that
(i) for each x € A, we have fp(x) < fpt1(x) for alln =1,2...;
(ii) the pointwise limit f(x) := lim, f,(x) exists for all x € A;
(iii) f is continuous on A.
Then f, converges to f uniformly on A.
Proof. Let g, :== f — f,, defined on A. Then each g, is continuous and g, (z) | 0 pointwise on A. It

suffices to show that g, converges to 0 uniformly on A.
Method I: Suppose not. Then there is € > 0 such that for all positive integer N, we have

(6'1) gn(xn) > €.
for some n > N and some x, € A. From this, by passing to a subsequence we may assume that
gn(xy) > € for all n = 1,2,.... Then by using the compactness of A, Theorem 6.1 gives a convergent

subsequence (z, ) of (z,) in A. Let z := lilgnxnk € A. Since gn,(2) | 0 as k — oo. So, there is a
positive integer K such that 0 < g,, (2) < £/2. Since g, is continuous at z and lim z,,, = z, we have
7

lim g, (Tn,;) = gny (2). So, we can choose i large enough such that i > K
7

Ini(Tn;) < Gng (¥n;) <€/2

because g (zn,) L 0 as m — oco. This contradicts to the Inequality 6.1.

Method II: Let ¢ > 0. Fix x € A. Since gn(x) | 0, there is N(z) € N such that 0 < g,(z) < ¢ for
all n > N(x). Since gy(y) is continuous, there is d(x) > 0 such that gy(,)(y) < ¢ for all y € A with
|z —y| < 0(x). If we put Jy := (x—0(x),x+d(x)), then A C |J,c4 Jo. Then by the compactness of A,
there are finitely many 1, ..., €, in A such that A C J,, U---UJ,, . Put N := max(N(z1), ..., N(z,)).
Now if y € A, then y € J(z;) for some 1 <14 < m. This implies that

In(Y) <IN (y) <€
for all n > N > N(z;). The proof is finished. O

7. ABSOLUTELY CONVERGENT SERIES

Throughout this section, let (a,) be a sequence of complex numbers.

oo oo
Definition 7.1. We say that a series Z an s absolutely convergent if Z lan| < co.
n=1 n=1

o
Also a convergent series Z an s said to be conditionally convergent if it is not absolute convergent.
n=1

1)n+1

[ee]
Example 7.2. Important Example : The series Z(na 1s conditionally convergent when
0<a<l. e
This example shows us that a convergent improper integral may fail to the absolute convergence or
square integrable property.
For instance, if we consider the function f :[1,00) — R given by
(_1)n+1

f(x):T if n<z<n+l.

o0
If a =1/2, then / f(z)dx is convergent but it is neither absolutely convergent nor square integrable.
1
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oo
Notation 7.3. Let o : {1,2...} — {1,2....} be a bijection. A formal series Z%(n) is called an

n=1

o0
rearrangement of E Q.

n=1

Example 7.4. In this example, we are going to show that there is an rearrangement of the series

oo )
-1 i+1
Z i s divergent although the original series is convergent. In fact, it is conditionally conver-
1
i=1
gent.
We first notice that the series ), 57— diverges to infinity. Thus for each M > 0, there is a positive

integer N such that

n

Z%l_le ......... (%)

i=1
for all n > N. Then there is N1 € N such that
Ny
1 1
— > 1.
Z 2 —1 2 -

i=1

By using (%) again, there is a positive integer No with N1 < Na such that

Ny

1
221—1_74r Z 22—1 *>2'

N1<i<Na

To repeat the same procedure, we can find a positive integers subsequence (N) such that

Ny

1 1 1
D Y — —— >k
Saoioit X et 2 51 m
N1<1<N2 N1 <i<Ny
for all posz’tz’ve integers k. So if we let a, = (717):“, then one can find a bijection o : N — N such that
o .
-1 i+1
the series Z ag(;) 18 an rearrangement of the series Z i and diverges to infinity. The proof
i
i=1 i=1

is finished.

o0
Theorem 7.5. Let Zan be an absolutely convergent series. Then for any rearrangement Zag(n)

n=1 n=1

1s also absolutely convergent. Moreover, we have Z Gp = Z Gy

n=1

Proof. Let 0 : {1,2...} — {1,2...} be a bijection as before.
We first claim that ) a,(,) is also absolutely convergent.
Let € > 0. Since )_,, |an| < oo, there is a positive integer N such that

|CLN+1| R + |a/N+p’ < E e (*)

for all p = 1,2.... Notice that since o is a bijection, we can find a positive integer M such that
M > max{j:1<o(j) < N}. Then o(i) > N if ¢ > M. This together with (x) imply that if ¢ > M
and p € N, we have
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Thus the series ) a,(,) is absolutely convergent by the Cauchy criteria.
Finally we claim that Y an = >, o@m)- Put Il =3 a, and I’ = 3 a,(n). Now let ¢ > 0. Then
there is V € N such that

‘Z_Zan’ < € and ‘aN-i-l’—’_ ...... +|aN+p‘ < E v (**)
n=1
for all p € N. Now choose a positive integer M large enough so that {1,..., N} C {o(1),...,0(M)} and
M
- Zaa(i)| < e. Notice that since we have {1,..., N} C {o(1),...,0(M)}, the condition (xx) gives
1=1

N M
D =Dt < D lail<e
n=1 i=1

N<i<oo
We can now conclude that

N N M M
=V <= an| + D an - —Il<3
= an an = o) +1D_ a0 — | < 3.

n=1 n=1 =1 =1

The proof is complete. ]

8. POWER SERIES

Throughout this section, let

denote a formal power series, where a; € R.

Lemma 8.1. Suppose that there is ¢ € R with ¢ # 0 such that f(c) is convergent. Then
(i) : f(z) is absolutely convergent for all x with |z| < |c|.
(ii) : f converges uniformly on [—n,n| for any 0 < n < |c|.

Proof. For Part (i), note that since f(c) is convergent, then lim a,¢™ = 0. So there is a positive integer
N such that |a,c”| <1 for all n > N. Now if we fix |z| < ]c[ then |z/c| < 1. Therefore, we have

Z |anlz"] < Z janlla™ + Y lanc™|z/e]* < Z janlla™ + Y Jz /e < co.

n>N n>N

So Part (7) follows.
Now for Part (i7), if we fix 0 < n < |¢| ,then |apz™| < |apn|™ for all n and for all z € [-n,n]. On the

other hand, we have " |a,n™| < oo by Part (i). So f converges uniformly on [—n,n| by the M-test.
The proof is finished. O

Remark 8.2. In Lemma 8.9(ii), notice that if f(c) is convergent, it does not imply f converges
uniformly on [—c,c| in geneml

For example, f =1+ Z . Then f(—1) is convergent but f(1) is divergent.

Definition 8.3. Call the set dom f:={x € R: f(c) is convergent } the domain of convergence of f
for convenience. Let 0 < r :=sup{|c|: ¢ € dom f} < co. Then r is called the radius of convergence

of f.
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Remark 8.4. Notice that by Lemma 8.9, then the domain of convergence of f must be the interval
with the end points r if 0 < r < co.

When r = 0, then dom f = {0}.

Finally, if r = oo, then dom f =R.

Example 8.5. If f(z) = Y_,°  nla™, then r = 04. In fact, notice that if we fir a non-zero number
x and consider lim,, |(n + 1)!2"TY|/|nlz"| = oo, then by the ratio test f(x) must be divergent for any
x#0. Sor =0 and dom f = (0).

Example 8.6. Let f(z) = 1+ 320 2"/n". Notice that we have lim,, [z"/n™|"/" = 0 for all . So
the root test implies that f(x) is convergent for all x and then r = oo and dom f =R.

Example 8.7. Let f(z) = 1+ Y00, 2"/n. Then lim, |2""/(n + 1)| - [n/a™| = |z| for all x # 0.
So by the ration test, we see that if |x| < 1, then f(z) is convergent and if |x| > 1, then f(z) is
divergent. So r = 1. Also, it is known that f(1) is divergent but f(—1) is divergent. Therefore, we
have dom f =[-1,1).

Example 8.8. Let f(z) = Y. 2"/n?. Then by using the same argument of Example 8.7, we have
r = 1. On the other hand, it is known that f(+1) both are convergent. So dom f =[-1,1].

Lemma 8.9. With the notation as above, if r > 0, then f converges uniformly on (—n,n) for any
O<n<r.

Proof. Tt follows from Lemma 8.1 at once. 0

Remark 8.10. Note that the Ezample 8.7 shows us that f may not converge uniformly on (—r,r).
In fact let f be defined as in Example 8.7. Then f does not converges uniformly on (—1,1). In fact,
if we let s, (x) =Y oo axz®, then for any positive integer n and 0 < x < 1, we have

:L,n—l—l SCQn
|son (z) — sp(z)| = o I —l-%.
From this we see that if n is fized, then limg_1_ |son(z) — sp(z)| > 1/2. So for each n, we can find

0 <z <1 such that |son(x) — sn(z)| > 5 — 1 = 3. Thus f does not converges uniformly on (—1,1) by

the Cauchy Theorem.

— a
Proposition 8.11. With the notation as above, let £ = lim \an\l/" or lim 7| ’n+’1‘ provided it exists.
n
Then
3 if 0</{ < oo;
r=140 if €= oc;
o0 if £=0.

Proposition 8.12. With the notation as above if 0 < r < oo, then f € C*(—r,r). Moreover, the
k-derivatives f*) (z) = Y onsk @kn(n —1)(n —2) .- (n—k+ 12" " for all x € (—r,7).
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Proof. Fix ¢ € (—r,r). By Lemma 8.9, one can choose 0 < n < r such that ¢ € (—n,n) and f converges
uniformly on (—n,n).

It needs to show that the k-derivatives f*)(c) exists for all k > 0. Consider the case k = 1 first.

If we consider the series Y o0 ((an2™) = >°°  na,z™ !, then it also has the same radius r be-
cause limy, [na,|'/" = lim, |a,|"/". This implies that the series >.°° | na,z™"! converges uniformly
on (—n,n). Therefore, the restriction f|(—n,n) is differentiable. In particular, f’(c) exists and
F(e) = 3oy nagen L.

So the result can be shown inductively on k. O

Proposition 8.13. With the notation as above, suppose that r > 0. Then we have

x e °] x (e%¢] 1
t)dt = Lt = Lt
[ s z/ antdt =Y ——au

0

for all x € (—r,r).

Proof. Fix 0 < x < r. Then by Lemma 8.9 f converges uniformly on [0, z]. Since each term a,t" is
continuous, the result follows. ]

Theorem 8.14. (Abel) : With the notation as above, suppose that 0 < r and f(r) (or f(—r)) exists.
Then f is continuous at x =1 (resp. x = —r), that is 1_i>m_f(:n) = f(r).

Proof. Note that by considering f(—=x), it suffices to show that the case x = r holds.
Assume r = 1.

Notice that if f converges uniformly on [0, 1], then f is continuous at z = 1 as desired.
Let € > 0. Since f(1) is convergent, then there is a positive integer such that

Sntp() — 8n(2) = an12" T+ appor™ ™ Fap ™ 4 + appr"
+ apio(z"? — 2" 4 ap g (a2 4 + apgp(z™F? — 2™
(8.1) + apya(z™ =T 4 F apap(a™t — 2mt2)
+ apyp(x" TP — TP,

Since x € [0, 1], [a" A+ — gntk| = gntk _ gnth+l Qo the Eq.8.1 implies that
|$n4p(2) =80 (2)| < e(@pi1+ (@™ =224 (2" P2 g T3 o (2P g P)) = (227 " TP) < 2.

So f converges uniformly on [0, 1] as desired.
Finally for the general case, we consider g(z) := f(rz) = 3., a,r"z™. Note that limy, [a,r"|'/" = 1
and g(1) = f(r). Then by the case above,, we have shown that

f(r) = g(1) = lim g(a) = lim f(a).

T—1— T—r—
The proof is finished. ]
Remark 8.15. In Remark 8.10, we have seen that f may not converges uniformly on (—r,r). How-

ever, in the proof of Abel’s Theorem above, we have shown that if f(£r) both exist, then f converges
uniformly on [—r,r] in this case.
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9. REAL ANALYTIC FUNCTIONS

Proposition 9.1. Let f € C*°(a,b) and c € (a,b). Then for any x € (a,b) \ {c} and for any n € N,
there is € = £(x,n) between ¢ and x such that

n ) (¢ z f(n+1)
f(x)zzf ( )(x—c)k+/ m(ﬂc—t)”dt
k=0 ¢

k! n!

> £(k)
Call Z / k'(c) (z — ¢)F (may not be convergent) the Taylor series of f at c.
k=0 ’

Proof. 1t is easy to prove by induction on n and the integration by part. O

Definition 9.2. A real-valued function f defined on (a,b) is said to be real analytic if for each
c € (a,b), one can find § > 0 and a power series Y po o ax(z — c)* such that

f(z) = Z ag(z —c)fF (%)
k=0

forallx € (¢ —d,c+6) C (a,b).

Remark 9.3.

(i) : Concerning about the definition of a real analytic function f, the expression (%) above is
uniquely determined by f, that is, each coefficient ay’s is uniquely determined by f. In fact,
by Proposition 8.12, we have seen that f € C*(a,b) and

forallk=0,1,2,....

(ii) : Although every real analytic function is C*°, the following example shows that the converse
does not hold.
Define a function f: R — R by

B e~/ if x #0;
f(‘r)_{o if @=0.

One can directly check that f € C®(R) and f*)(0) = 0 for all k = 0,1,2.... So if f is real
analytic, then there is 6 > 0 such that ai, = 0 for all k by the Eq.(x*) above and hence f(x) =0
for all x € (—0,0). It is absurd.

(11i) Interesting Fact : Let D be an open disc in C. A complex analytic function f on D is
similarly defined as in the real case. However, we always have: fis complex analytic if and
only if it is C°.

Proposition 9.4. Suppose that f(x) == > 5o, ar(z—c)¥ is convergent on some open interval I centered
at ¢, that is I = (¢ —r,c+ ) for some r > 0. Then f is analytic on I.

Proof. We first note that f € C°°(I). By considering the translation x — ¢, we may assume that ¢ = 0.
Now fix z € I. Now choose § > 0 such that (z — §,z + d) C I. We are going to show that
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for all x € (z — 9,2 + 0).
Notice that f(z) is absolutely convergent on I. This implies that

f(z) = Zak(x —z42)k
k=0
) k
E(k—1)------ k—j+1 _
ST SY R S TR
k=0 7=0
> . k (x —2)
=> O k(k—1)--- (k—j+ Dapz") —
=0 k> I
> £(9) .
:Zf .'(Z)(x—z)J
=0 7
for all x € (z — J, 2 + ). The proof is finished. O

Example 9.5. Let o € R. Recall that (1 + x)* is defined by e*™0+%) for o > —1.

Now for each k € N, put
<a> B a(afl)---l-g-!-(afk+1) Zf k 7& 0;
k) )1 if ©=0.

Then .
fay= =3 (1)et
k=0
whenever |x| < 1.
Consequently, f(x) is analytic on (—1,1).
Proof. Notice that f*)(z) = afa —1)------ (@ —k+1)(1+2)*F for |2] < 1.

Fix |z| < 1. Then by Proposition 9.1, for each positive integer n we have

= v o
fo =31 kfo)xk+/() ({1 _(fi!(a:—t)”ldt

k=0

So by the mean value theorem for integrals, for each positive integer n, there is &, between 0 and x

such that o -
N f " (t) n—1g, _ f " (gn) _ n—1
/0 (n—l)!(x_t) dt = (n—l)!(x &)
Now write &, = f 0 = AR (&) — &)t
n = Npa for some 0 < n, <1 and R,(x) := = 1) (. —&,)" "x. Then

Ry(z) = (a—n—i—l)( )(1+T]nx)°‘"(x—nnx)"1:c - (a—n+1)<

We need to show that R, (z) — 0 as n — oo, that is the Taylor series of f centered at 0 converges to

_ 1*7771, _
n(1 a—1 n 1.
n—1 n—1>z (1+na2) (1+nnx)
«

o
f. By the Ratio Test, it is easy to see that the series Z(Oz —k+1) <k

>yk is convergent as |y| < 1.
k=0

This tells us that lim|(a —n + 1) <a> " = 0.
n n

On the other hand, note that we always have 0 < 1 —n, < 1+n,x for all n because x > —1. Thus, we
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can now conclude that R, (x) — 0 as |z| < 1. The proof is finished. Finally the last assertion follows
from Proposition 9.4 at once. The proof is complete. O
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